LITEVV >> ГОСТЕВАЯ КНИГА | ФОРУМ | ЧАТ | НАШ E-MAIL | СДЕЛАТЬ СТАРТОВОЙ | ДОБАВИТЬ В ИЗБРАННОЕ | РАССЫЛКА |

Учащимся

 :: Коллекция рефератов
 :: Школьные сочинения
 :: Краткие содержания
 :: Разборы стихов
 :: Биографии писателей
 :: Русская библиотека
 :: Готовые Д/З
 :: Архив шпаргалок
 :: Теория литературы
 :: Лекции и конспекты
 :: Тесты по предметам
 :: Полезные советы
 :: Словари и таблицы
 :: Учебные программы

Разное

 :: Поиск по сайту
 :: Прохождение игр
 :: Взломщик игр
 :: Коллекция обоев
 :: Flash Игры
 :: 3D Заставки
 :: IQ тесты
 :: MP3 приколы
 :: Фото приколы
 :: Отправка SMS
 :: Каталог ссылок
 :: Web мастеру
 :: Гостевая книга
 :: Форум сайта
 :: Реклама на сайте



Функциональные элементы. Схемы



Функциональный элемент с n упорядоченными входами и одним выходом.




При подаче на выходы любой комбинации двоичных сигналов, на выходе также возникает сигнал.
Каждый вход – аргумент функции.
Выход – булева функция от аргументов.

Из функциональных элементов можно строить по правилам их соединения схемы (логические сети).

Два и более входов можно отождествлять.

Возможные соединения функциональных элементов соответствуют булевым функциям и их суперпозициям.

Полный набор булевых функций, который мы будем использовать для построения логических сетей (схем) в какой-нибудь задаче, мы назовем базисом из функциональных элементов.
Число функциональных переменных считаем сколь угодно большим.

Базис называется полным, если с его помощью можно реализовать любую булеву функцию в виде схемы.

Очевидно, чтобы базис был полным, необходимо и достаточно, чтобы система функций, реализуемых элементами базиса, была полной.
Пример полного базиса.




Чтобы построить минимальную функциональную схему для функции на конъюнкторах, дизъюнкторах и инверторах, которая реализует эту функцию, нужно
1. Найти минимальную ДНФ.
2. Для любой из минимальных ДНФ (их может быть много) попробовать упростить формула с помощью вынесения за скобки общего множителя.
Сумматор n-разрядных двоичных чисел
Составить элементы с 2n входами и n+1 выходом, реализующих сложение n-разрядных двоичных чисел вида

X = XnXn-1…X1
Y = YnYn-1…Y1
Z = x+y = Zn+1Zn…Z1
X+Y – сумма чисел.

Для решения такой задачи вводим qi – единица переноса из одного разряда в другой.

Формулы сумматора
Zi = Xi + Yi + Qi – сумма по модулю 2
Qi+1 = XiYi V XiQi V QiYi








Copyright © 2003—2016 "Litevv"

Двигатель торговли

 
Линкомёт







LITEVV >> ГОСТЕВАЯ КНИГА | ФОРУМ | ЧАТ | НАШ E-MAIL | СДЕЛАТЬ СТАРТОВОЙ | ДОБАВИТЬ В ИЗБРАННОЕ | РАССЫЛКА |
Hosted by uCoz