LITEVV >> ГОСТЕВАЯ КНИГА | ФОРУМ | ЧАТ | НАШ E-MAIL | СДЕЛАТЬ СТАРТОВОЙ | ДОБАВИТЬ В ИЗБРАННОЕ | РАССЫЛКА |

Учащимся

 :: Коллекция рефератов
 :: Школьные сочинения
 :: Краткие содержания
 :: Разборы стихов
 :: Биографии писателей
 :: Русская библиотека
 :: Готовые Д/З
 :: Архив шпаргалок
 :: Теория литературы
 :: Лекции и конспекты
 :: Тесты по предметам
 :: Полезные советы
 :: Словари и таблицы
 :: Учебные программы

Разное

 :: Поиск по сайту
 :: Прохождение игр
 :: Взломщик игр
 :: Коллекция обоев
 :: Flash Игры
 :: 3D Заставки
 :: IQ тесты
 :: MP3 приколы
 :: Фото приколы
 :: Отправка SMS
 :: Каталог ссылок
 :: Web мастеру
 :: Гостевая книга
 :: Форум сайта
 :: Реклама на сайте



Эйлеровы графы




Дан граф. Требуется найти в нем маршрут, проходящий по каждому ребру ровно один раз. Начало и конец – в одной вершине.
Такой маршрут называется Эйлеровым циклом, а граф, в котором он существует, называется Эйлеровым графом.
Степень вершины в графе – это число ребер, инцидентных этой вершине.

Критерий эйлеровости графа.
Для того, чтобы связный граф без петель был Эйлеровым, необходимо и достаточно, чтобы степень его вершины была четным числом.

Планарные графы.

Определение.

Укладкой графа называется такое его геометрическое изображение, при котором ребра пересекаются только в вершинах. Если существует укладка графа на плоскости, то граф называется планарным.
Сама же укладка графа без пересечения ребер называется плоским графом.

Любой граф можно изобразить в трехмерном пространстве без пересечения ребер.




Для любого графа xi, соединяющего 2 вершины проводим новую плоскость, содержащую эту прямую, а ребро рисуем на плоскости.
Граф будет планарным, если существует его укладка на сфере.




Доказательство следует из взаимно однозначного соответствия точек на сфере с точками плоскости из стереографических проекций.
Следствие. Граф любого выпуклого многогранника планарен.

Ребра плоского графа разбивают плоскость на несколько частей, одна из которых бесконечна. Эти части и являются гранями плоского графа.

Теорема Эйлера о плоских графах.
Формула Эйлера.

Для плоского графа справедливо соотношение.
M – N + P = 2.

Докажем индукцией по числу граней
P = 1
Если P = 1, то граф – дерево. В нем нет ни одного цикла. У дерева число вершин больше числа ребер на 1.
M = N + 1
N + 1 – N + 1 = 2 – справедливо.

Пусть p = k, и утверждение верно.
Тогда оно верно и при P= k+1
Берем ребро графа, отделяющее бесконечную грань от внутренних и удаляем это ребро из графа. Т.к. оно циклическое, то в новом графе g1 (он также будет связным) число вершин M останется прежним.
N1 = N – 1
P1 = P – 1
M = M
k + 1-1 = k
Для g1 справедливо предположение индукции.
M1 + N1 + P1 = 2
M – N – 1 + K = 2
M – N + K – 1 = 2
M – N + P = 2
Что и требовалось доказать.
Следствие 1.
Для плоского связного простого графа справедливо соотношение
n <= 3*(m-2)
Следствие 2.
Для плоского связного простого графа без треугольных граней справедливо соотношение
n <= 2*(m-2)
Следствие 3.
Граф K5 – непланарен.

m > 2


И если бы он был плоским, то для него было бы справедливо следствие 1.

N <= 3*(m-2)
10 <= 9 – неверно.
Противоречие. Значит, он не может быть нарисован плоским.
Следствие 4.
Граф K3-3 непланарен.




Нет треугольных граней.
Если бы он был плоским, то для него было бы справедливо следствие 2.

9 <= 2*(6-2)
9 <= 8 – неверно.

Противоречие из предположения, что он не может быть плоским.

Операцией разбиения ребра графа называется следующая процедура:

Ребро удаляется из графа, и в граф добавляется новая вершина, соединенная новыми ребрами с концами данного ребра.

Два графа называются гомеоморфными, если каждый из них может быть получен из одного и того же графа путем применения конечного числа раз операции разбиения ребер.

Теорема Понтрягина – Куратовского.
Чтобы граф был планарным, необходимо и достаточно, чтобы он не содержал гомеоморфных подграфов.








Copyright © 2003—2016 "Litevv"

Двигатель торговли

 
Линкомёт







LITEVV >> ГОСТЕВАЯ КНИГА | ФОРУМ | ЧАТ | НАШ E-MAIL | СДЕЛАТЬ СТАРТОВОЙ | ДОБАВИТЬ В ИЗБРАННОЕ | РАССЫЛКА |
Hosted by uCoz